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SUMMARY

In the present study improvements to numerical algorithms for the solution of the compressible Euler
equations at low Mach numbers are investigated. To solve flow problems for a wide range of Mach
numbers, from the incompressible limit to supersonic speeds, preconditioning techniques are frequently
employed. On the other hand, one can achieve the same aim by using a suitably modified acoustic
damping method. The solution algorithm presently under consideration is based on Roe’s approximate
Riemann solver [Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes.
Journal of Computational Physics 1981; 43: 357–372] for non-structured meshes. The numerical flux
functions are modified by using Turkel’s preconditioning technique proposed by Viozat [Implicit upwind
schemes for low Mach number compressible flows. INRIA, Rapport de Recherche No. 3084, January
1997] for compressible Euler equations and by using a modified acoustic damping of the stabilization
term proposed in the present study. These methods allow the compressible Euler equations at low-Mach
number flows to be solved, and they are consistent in time. The efficiency and accuracy of the proposed
modifications have been assessed by comparison with experimental data and other numerical results in
the literature. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, increasing interest has been focused on the investigation of numerical methods
for the simulation of flows at low Mach numbers. These investigations are mainly derived by
the fact that many applications of technological interest occur in the transitional regime
between incompressible and compressible flows. For these applications, an ‘all Mach number
capability’ of the simulation code is required. Several numerical techniques addressing this
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problem have been proposed. These are derived either from traditional incompressible methods
or from the modifications of compressible methods. Incompressible methods that use pressure
as the primary variable and a compressible form of the SIMPLE algorithm have been
proposed in References [1,2]. A more rigorous treatment of the problem is the asymptotic
analysis using multiple pressure variables [3,4], where the effect of acoustics on the flow field
is treated via a Taylor expansion of the pressure in terms of Mach number. Various methods
have been proposed to perform low-Mach number calculations with compressible codes
[5–10]. Here, two techniques have been investigated to modify the strength of the acoustic
waves and thus to improve convergence to a steady state. On the other hand, the methods
belong to the artificial compressibility approach, applying a preconditioning operator to the
time derivative, in which an originally mixed elliptic/hyperbolic system becomes a hyperbolic
system of equations. This method is inconsistent in time. Thus, it is not suitable for unsteady
problems. A variety of preconditioning strategies has been developed, suitable also for
unsteady problems, as has been shown in Reference [11].

In the present investigation, a modified acoustic damping method is developed for compress-
ible Euler equations. It is also suitable for unsteady problems. Moreover, it gives the same
accuracy as unsteady preconditioning strategies when it is suitably modified. The implementa-
tion of this method is easier as well. In reality, both techniques damp the acoustic waves
artificially. On the other hand, the use of numerical methods to solve partial differential
equations (PDEs) introduces an approximation that can change the form of the basic
differential equations themselves. Since these approximations are not precisely the same as the
original equations, they can simulate physical phenomena like diffusion, dissipation, boundary
layers, etc., in ways that are not exactly the same as an exact solution to the basic PDE. These
differences are usually referred to as truncation errors, which are often identified with
particular physical phenomena on which they have a strong effect. There is nothing wrong
with identifying an error with a physical process as long as the error is kept small in some
engineering sense. In the present study, these errors are referred to as dissipation errors. The
concept of acoustic damping is applied to the unsteady compressible Euler equations with a
modified formulation and without changing the dissipative properties of the flow. The
obtained solutions are compared with the experimental results as well as with the numerical
solutions of Viozat [11], who obtained them by changing the numerical flux function in a
time-consistent manner, as is done in the present investigation. During this investigation, a
finite volume, two-dimensional, unstructured Euler solver (SUN), both for external and
internal flows, was developed by Sabanca [12] and validated for various test cases.

2. GOVERNING EQUATIONS

The equations of motion are the Euler equations, which govern the motion of an inviscid,
compressible, unsteady fluid. They can be written in conservative differential form as follows:

(Q
(t

+9a ·Fb =0 (1)
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where Q is the vector of the conservative variables and Fb = (F, G) are the components of the
inviscid fluxes, defined as
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The relations for energy, enthalpy and pressure close the system

e=
p

(g−1)r
+

1
2

(u2+62), h=e+
p
r

(3)

3. NUMERICAL METHOD

The integral conservation laws are written for a control volume V after applying Gauss’s
theorem as

&
V

(Q
(t

dV+
7
(V

Fb · n̂ ds=0 (4)

where n� is the outward-pointing unit normal vector to the control volume. The control
volumes for the present cell vertex finite volume approximation of Equation (4) are chosen to
be the barycentric cells around each node, as is shown in Figure 1. The upwinding direction
in the spatial discretization is chosen to be the control volume’s face normal. For the present
unstructured formulations, these normals can be defined as follows: considering Figure 2, let

Figure 1. Control volumes are the barycentric cells around each node.
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Figure 2. Cell face normals.

Gij and Gij+1 be the centroids of two neighbouring triangles and let Iij be the mid-point of
the common edge of these two neighbouring triangles. Then, directed lengths from the dual
mesh are defined by the corresponding normals and the lengths of the sections n̂ ij

1 =n� ij
1lij

1

and n̂ ij
2 =n� ij

2lij
2. An averaged directed length is then defined as n̂ij= n̂ ij

1 + n̂ ij
2. With this

notation, the second term in Equation (4) can be approximated as follows:

7
(V

Fb · n̂ ds: %
j�K(i)

Fb ij · n̂ij (5)

where j�K(i ) denotes the set of all the neighbouring nodes of i and Fb ij is some approxima-
tion of the convective flux computed on the edge between two adjacent control volumes.

3.1. Preconditioning of the flux function

The spatial discretization is based on a flux difference splitting nodal point scheme, which
is modified to handle low-Mach number flows. The computation of the convective terms in
Equation (4) is decomposed among the cell faces of the control volumes. The upwinding is
introduced in the computation of this term through the use of numerical flux function F.
Two kinds of numerical flux functions are used. The first one is proposed by Viozat [11]

FF(QL, QR, n̂)=
F(QL, n̂)+F(QR, n̂)

2
−

1
2

Pc
−1�PcAcn̂x+PcBcn̂y �(QR−QL) (6)

For the detailed derivation see References [11,12]. Here, QL and QR are the conservative
variables on the left and right states of the edge under consideration. Ac and Bc are the
Jacobian matrices in conservative variables. Pc is the preconditioning matrix proposed by
Turkel [9] for incompressible flows
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The numerical flux function is written in a form that allows the comparison with central
schemes in that the first term can be thought of as a central discretization term and the second
term can be thought of as a stabilization or artificial viscosity term. From a diagonalizing
matrix, the stabilization term can be obtained from its eigenvalues as follows:

Pc
−1�PcAcn̂x+PcBcn̂y �=Tg�L�Td (8)

The components of the diagonal matrix L are the eigenvalues of the coefficient of the term
(QR−QL) in Equation (6), i.e.

l1,2=u� · n̂ (9)
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ŝ(g−1)

t.

−

ŝ
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with

r=l3−l1b
2, s=l4−l1b

2, t=
l4−l3

2
(13)

for any stressed variable x

x̂=
x


n̂x
2 + n̂ y

2

and a2=pg/r. The preconditioning involves a parameter b, which may be chosen as follows
[Viozat C. Personal communication, April 1997]:

� can be chosen to be constant and equal to 1;
� can be equal to the maximum Mach number in the flow;
� can be equal to the local Mach number evaluated at Roe-averaged values:

Maverage=

uaverage

2 +6average
2

aaverage

where u and 6 are the horizontal and vertical components of the velocity respectively and
a is the speed of sound;

� can be equal to the maximum of the local Mach numbers computed in neighbouring
segments.

It has to be noted that for variable b, the preconditioned diagonalizing matrices discussed
previously are singular at the stagnation points; thus some smoothing procedure has to be
applied to the variable b.
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3.2. The acoustic damping method

A modified version of the numerical flux function (6) based on a distinction of the material
wave and acoustic wave part is investigated. Let d be the acoustic damping parameter. Then,
the numerical flux function can be written as follows [5,12]:

FF(QL, QR, n̂)=
F(QL, n̂)+F(QR, n̂)
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−
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Here Tg and Td are obtained from Equations (11) and (12) for b=1. Moreover, Td ·Tg=
Identity. Then, one obtains from Equation (14)
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In this study, in order not to change the dissipative properties of the flow, the acoustic
damping parameter d has to be chosen properly. However, there is no systematic way to
choose the damping parameter d.

The parameter used in the acoustic damping method affects the speed of waves associated
with acoustics only; like the preconditioning algorithm proposed by Turkel [9] for incompress-
ible flows, e.g. the third and fourth columns of Tg given in Equation (12) as well as the third
and fourth rows of Td given in Equation (11). The aim of such a process is to append a small
amount of upwinding to the waves that are associated with acoustics. This results in a better
accuracy in the low Mach number limit of compressible Euler equations.

The coefficient of the difference (QR−QL) in both numerical flux functions given in
Equations (6) and (14) are evaluated at Roe-averaged values in (CiS(Cj [13]

r̃=
rLrR (18)

ũ=
uL+uR
rL/rR

1+
rL/rR

(19)
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They can be evaluated at the arithmetic average values in (CiS(Cj as it has been proved by
Harten–Lax–Leer [14] for incompressible flow equations. However, there is not much
difference observed between the results obtained by the numerical experiments.

3.3. MUSCL interpolation

The numerical flux functions evaluated at non-extrapolated conservative variables at the nodes
will lead to first-order accuracy in space. Following the monotone upstream centred scheme
for conservation laws (MUSCL) interpolation of van Leer [15], one way to reach second-order
spatial accuracy is to evaluate the fluxes with extrapolated values QL and QR at the control
volume face (CiS(Cj. By definition, a difference scheme in conservation is said to be an
upwind scheme if QL and QR are nearby states and Fij is a linear approximation to the
numerical flux (5). Considering Figure 1, the MUSCL interpolation of the conservative
variables can be expressed as follows:

QL=Qi+
1
2

[(1−k)(D−)i+k(D+)i ] (23)

QR=Qj+
1
2

[(1−k)(D−)j+k(D+)j ] (24)

(D−)i=Qxi
(xj−xi)+Qyi

(yj−yi) (25)

(D+)i=Qj−Qi (26)

(D−)j=Qxj
(xi−xj)+Qyj

(yi−yj) (27)

(D+)j=Qi−Qj (28)

Here k is the upwinding parameter and is equal to 0.5. As it is seen from the interpolation
functions, none of the flux limiters are introduced into the interpolation. In spite of this, the
results obtained from this kind of interpolation did not show oscillations near shocks, even for
high-Mach number flows. For high-Mach number applications see Sabanca [12]. Qxi

, Qyi
, Qxj

,
Qyj

in Equations (25)–(28) are computed by applying Green’s theorem and taking the value of
Q along an edge of the control volume to be the average of the end point values. For instance,
the contribution of Qxi

, along edge j–k in Figure 1 is given by
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Qxi
=

1
2Ai

(Qj+Qk)(yk−yj) (29)

3.4. Data structure

In principle, the cells and nodes are ordered randomly for unstructured grids. Thus, the use of
unstructured grids requires the storage of connectivity information along with the use of an
indirect addressing system in which the nodes cannot be represented by their indices. Since
numerical fluxes are to be calculated across each edge of the mesh for the nodal scheme, a data
structure based on the mesh nodes can be employed. To define a node-based structure,
two-integer addressing must be stored for each edge. Thus, an array must be dimensioned
NEDGE(ND,2), where ND is the total number of nodes in the mesh. For each edge, the first
two values in NEDGE, SI and SJ, correspond to the address of the nodes on either end of that
edge, as shown in Figure 2. The addresses of the remaining vertices of each triangle on either
side of that edge are also addresses of the nodes associated with the two control volumes
delimited by that edge. With this information, a complete flux balance over the entire flow
field can be accomplished with a simple loop over the edges. For example, for the nodal
scheme, a simple loop is constructed as

DO 10 I=1,ND
SI=NEDGE(I,1)
SJ=NEDGE(I,2)
FLUX=FCTN(variables at N1 and N2)
Residual(SI)=Residual(SI)+FLUX

10 Residual(SJ)=Residual(SJ)-FLUX

The flux at each edge is calculated only once and then added to and subtracted from the two
control volumes on either side of that edge, thus ensuring conservation. The above loop will
not readily vectorize due to recurrences in the last two statements. This arises from the fact
that the individual control volumes (i.e. SI and SJ in this case) receive contributions from
more than one edge in the mesh. This problem can be discarded by reordering the edges and
grouping them into several distinct groups, such that, within each group, no control volume of
the mesh is accessed more than once. This, on the other hand, results in a reduction of the
vector lengths that can be used in a flux balance calculation. In the present study, these edges
are grouped according to whether they are wall boundary edges or far field boundary edges or
inner field edges.

3.5. Boundary conditions

At a solid wall the following treatment of boundary conditions has been chosen. In the
approximation of flux balance, one row of auxiliary cells is used at the wall and the state at
each mirror-image node is computed by imposing isentropic simple radial equilibrium (ISRE)
at each node of the solid wall boundary. The normal velocity components at the mirror points
have to be chosen so as to satisfy the slip condition after the computation of the numerical flux
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function. Therefore, in a simplified ISRE approach, the normal velocity components at the
auxiliary nodes are first mirrored with respect to the wall, which allows only the flux of the
pressure terms to contribute to the momentum equations and thus satisfy the condition of
zero mass flux and energy flux through the wall surface, see Ransbeeck and Hirsch [16].

At the inflow and outflow boundaries, a precise set of compatible exterior data,
which depend on the flow regime and the velocity direction, is to be specified. Following
Steger and Warming [17], fluxes are computed by using upstream values of the entropy
deviation

S=
� p

p�

��r�

r

�g

−1 (30)

Downstream density is computed from this relation provided that entropy deviation is zero.
The integration in Equation (31) corresponds to inflow and outflow boundaries. Let Qi be
the conservative variable at the interior node and let Q� be the free stream conservative
variables kept at the ghost nodes. A flux vector splitting scheme following Steger and
Warming [17] is applied between exterior data and interior values, i.e.

7
(CiSG�

Fb (Q) · n̂i ds=A0 +(Qi, n̂i�) ·Qi+A0 −(Qi, n̂i�) ·Q� (31)

where

A0 =Acn̂x+Bcn̂y (32)

and

A0 + =L0 L+L0 −1, A0 − =L0 L−L0 −1 (33)

where L+ has only positive eigenvalues, L− only negative eigenvalues and such that

L=L+ +L−, �L�=L+ −L− (34)

A0 =A0 + +A0 − (35)

�A0 �=A0 + −A0 − (36)

The diagonalizing matrices are given as follows:
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(38)

This non-reflective-type boundary condition implementation allows smaller domains to be
used, as there is no reflection from the outer boundary that affects the convergence of the
solution.

3.6. Time integration

A semi-discrete form of the governing equations is

Acell

(Qi

(t
+Ri=0 (39)

where

Ri= %
j�K(i)

FFij
Dsij (40)

Temporal discretization of the governing equations is performed by using fourth-order
Runge–Kutta explicit time stepping developed by Jameson [18]. The Courant condition for
unstructured triangulations is

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 167–185



M. SABANCA, G. BRENNER AND N. ALEMDAROG" LU178

Dt
Acell

=
n

maxfaces (un+a)Dsij

(41)

Here n is the Courant–Friedrich–Lewy (CFL) number. Then, time integration steps are

Qi
0=Qi

n (42)

Qi
1=Qi

0−a1

Dt
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Ri(Qi
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Dt
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Ri(Qi
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n+1=Ui

4 (47)

with

a1=0.0833, a2=0.2069, a3=0.4265, a4=1.0 (48)

To accelerate the convergence in a simple way, local time stepping could be utilized as enthalpy
damping cannot be used for flux difference splitting schemes.

4. RESULTS AND DISCUSSION

The numerical methods described in the previous sections were utilized for the simulation of
a variety of flow problems. Computed results indicate that both schemes are accurate, reliable
and robust. On the other hand, with decreasing Mach numbers, the allowable Courant number
decreases if the preconditioning parameter is variable. For this reason, the time required to
reach steady state conditions increases at low subsonic Mach numbers. Moreover, once the
preconditioning parameter is chosen to be constant (which must be the natural choice for high
Mach numbers) numerical experiments show that the CFL number cannot exceed 1.6. On the
other hand, the allowable CFL number when using the acoustic damping method is 2. In order
to accelerate the convergence to steady state conditions, local time stepping can be utilized.
Another simple way to accelerate the convergence is enthalpy damping, which was not used in
the present study since it is inappropriate when upwind differencing is utilized [19]. Some
numerical results are given here to demonstrate the capability and efficiency of the present
unstructured Euler solver SUN. The unstructured grids for all the geometries within this
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numerical study were generated using the programs MESH2D and MESHO provided by Dr
K. Karamete. Details of these programs can be found in Reference [20].

The present code was tested on both NLR7301 (two-element) airfoil and NACA0012 airfoil
for the cases shown in Table I.

Results of the simulation are compared with experimental results performed by Van Den
Berg and Gooden, see Reference [21]. These conditions have been chosen because here no
separation occurs, which would invalidate the Euler equations used in the present analysis.
Test data are given for a two-dimensional flow past the wing flap configuration at Re=2.51×
106 and a Mach number M=0.185, which has been so designed that no flow separation
occurs, apart from a small laminar separation bubble on the wing nose. The trailing edge flap
is deflected 20°. The gap between the main airfoil element and flap element is 2.6 per cent (the
ratio of the vertical distance between the main element and flap element to total chord). The
experimental and computational results obtained by the present code for the pressure coeffi-
cient distributions over the main element and the trailing edge flap are shown in Figures 3 and
7 for CASE2 and CASE3 respectively. In these figures, the differences between experimental
and computational results in flap configurations are due to thick boundary layer flow on the
upper surface of the flaps. The convergence history is given in Figure 4 for CASE2. A detail

Table I. Test cases for the presented algorithms.

Number ofNumber ofAngle ofMach numberWall
trianglesnodesattack

NACA0012 M�=0.1 0° 2242 4312CASE1
10.1° 3079 5904CASE2 NLR7301 M�=0.185

CASE3 6°M�=0.185NLR7301 59043079

Figure 3. Comparison of Cp distribution for NLR7301 airfoil main element and flap element respec-
tively, CASE2, preconditioned.
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Figure 4. Convergence history for NLR7301 airfoil CASE3, d=0.5.

Figure 5. Enlarged view of the computational mesh for NLR7301 airfoil (a) and Mach contours for
CASE2 (b), preconditioned.

of the mesh used in the computation is shown in Figure 5 and the corresponding Mach
number distributions are given in Figures 5 and 6 for CASE2 and CASE3 respectively.

The preconditioning algorithm is taken as a reference point in order to investigate the effect
of parameters used in the acoustic damping method. For this reason, CASE1 is divided into
sub-cases as shown in Table II.

One has to be careful in choosing the acoustic damping parameter d in order not to change
the dissipative properties of the flow. A comparison of Mach contours and convergence
histories is shown in Figures 8 and 9. According to Figure 8(b) and (e), the optimum d is 1 for
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Figure 6. Mach contours for CASE3.

Table II. Comparison of lift and drag coefficients with the experimental
results.

ExperimentalComputational

Lift DragLift Drag

2.877 0.03232.7950CASE2 0.16607
CASE3 0.240 2.416 0.02292.229

Figure 7. Comparison of Cp distributions of main element and flap element respectively with the
experimental results for CASE3, d=0.5.
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Figure 8. Mach contours for (a) CASE11, (b) CASE12, (c) CASE13, (d) CASE14 and (e) CASE15.

CASE1. By the numerical experiments, this optimum acoustic damping parameter is changing
by the free stream Mach number and the maximum allowable d is 2 for CASE1. Considering
CASE11 and CASE13 in Tables III and V, the flow is dissipative in regions where the flow is
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Figure 9. Convergence histories for CASE12 and CASE15.

Table III. Parameters used for CASE1 in the presented solutions.

Parameters usedMethod

Acoustic damping 0.5CASE11
CASE12 Acoustic damping 1.0
CASE13 Acoustic damping 1

6
3
2CASE14 Acoustic damping

Preconditioning variable bCASE15

Table IV. Computational cost for the low-Mach number flow simulations.

Case number CPU time (s)

1567.40CASE14
CASE15 3361.60

expected to be viscous when d is small as is shown in Figure 8(a) and 8(c). On the other hand,
when d is chosen to be greater than its optimum value, CASE14, the solution shows good
behaviour in the near wall regions but becomes dissipative in uniform regions of the flow as
is shown in Figure 8(c). For the optimum value of d, i.e. CASE12, the obtained solution
dictates the solution obtained by preconditioning, CASE15, as is seen from the maximum and
the minimum Mach numbers given in Table V and from Figure 8(b) and (e). The advantage
of the acoustic damping method compared with preconditioning is its computational
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Table V. Comparison of maximum and minimum Mach numbers obtained in
NACA0012 airfoil flow simulations.

Mmax Mmin

CASE11 0.1127 0.009128
CASE12 0.1086 0.01854

0.00913080.1127CASE13
CASE14 0.17051 0.0244405
CASE15 0.0184120.1084

efficiency, as can be seen from Table IV, where the CPU time obtained on an IBM/+AIX
RS6000 are compared. The convergence histories for the optimum acoustic damping parameter
for CASE12 and the preconditioning algorithm CASE15 are compared in Figure 9.

5. CONCLUSION

We have investigated for the two-dimensional unsteady, compressible Euler equations, the
capability to accurately calculate low-Mach number flows, which are already assumed to be
incompressible in this limit. Similar work has already been performed by Viozat [8,11], using
an explicit preconditioning algorithm. It was found that a suitably modified acoustic damping
algorithm investigated in the present study will give the same results. The advantage of the
modified acoustic damping algorithm is that the implementation is easier and the CFL number
does not degrade with decreasing Mach number compared with a preconditioning algorithm.
This allows faster convergence to steady state calculations and the error is small enough in
some engineering sense. The present code shows good behaviour in solving moderately
low-Mach number flows. Moreover, the obtained solutions are fourth-order time and second-
order space accurate. However, solutions at very low Mach numbers with this approach
showed that the accumulations of round-off errors in pressure terms affect the convergence
and the accuracy of the solutions by the numerical experiments.

Future work will concentrate on the development of more general ideas to increase the
performance of the solver at low Mach numbers and to increase the computational efficiency
by parallelizing and by implementing solution adaptive procedures.
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